41 research outputs found

    Impact of Correlated Mobility on Delay-Throughput Performance in Mobile Ad-Hoc Networks

    Get PDF
    Abstract—We extend the analysis of the scaling laws of wireless ad hoc networks to the case of correlated nodes movements, which are commonly found in real mobility processes. We consider a simple version of the Reference Point Group Mobility model, in which nodes belonging to the same group are constrained to lie in a disc area, whose center moves uniformly across the network according to the i.i.d. model. We assume fast mobility conditions, and take as primary goal the maximization of pernode throughput. We discover that correlated node movements have huge impact on asymptotic throughput and delay, and can sometimes lead to better performance than the one achievable under independent nodes movements. I. INTRODUCTION AND RELATED WORK In the last few years the store-carry-forward communication paradigm, which allows nodes to physically carry buffered dat

    How Much Can The Internet Be Greened?

    Get PDF
    Abstract—The power consumption of the Internet is becoming more and more a key issue, and several projects are studying how to reduce its energy consumption. In this paper, we provide a first evaluation of the amount of redundant resources (nodes and links) that can be powered off from a network topology to reduce power consumption. We first formulate a theoretical evaluation that exploits random graph theory to estimate the fraction of devices that can be removed from the topology still guaranteeing connectivity. Then we compare theoretical results with simulation results using realistic Internet topologies. Results, although preliminary, show that large energy savings can be achieved by accurately turning off nodes and links, e.g., during off-peak time. We show also that the non-cooperative design of the current Internet severely impacts the possible energy saving, suggesting that a cooperative approach can be investigated further. I

    How much can large-scale Video-On-Demand benefit from users' cooperation?'

    Get PDF
    International audienceWe propose an analytical framework to tightly characterize the scaling laws for the additional bandwidth that servers must supply to guarantee perfect service in peer-assisted Video-on-Demand systems, taking into account essential aspects such as peer churn, bandwidth heterogeneity, and Zipf-like video popularity. Our results reveal that the catalog size and the content popularity distribution have a huge effect on the system performance. We show that users' cooperation can effectively reduce the servers' burden for a wide range of system parameters, confirming to be an attractive solution to limit the costs incurred by content providers as the system scales to large populations of users

    Stochastic Analysis of Self-Sustainability in Peer-Assisted VoDSystems

    Get PDF
    Abstract—We consider a peer-assisted Video-on-demand system, in which video distribution is supported both by peers caching the whole video and by peers concurrently downloading it. We propose a stochastic fluid framework that allows to characterize the additional bandwidth requested from the servers to satisfy all users watching a given video. We obtain analytical upper bounds to the server bandwidth needed in the case in which users download the video content sequentially. We also present a methodology to obtain exact solutions for special cases of peer upload bandwidth distribution. Our bounds permit to tightly characterize the performance of peer-assisted VoD systems as the number of users increases, for both sequential and nonsequential delivery schemes. In particular, we rigorously prove that the simple sequential scheme is asymptotically optimal both in the bandwidth surplus and in the bandwidth deficit mode, and that peer-assisted systems become totally self-sustaining in the surplus mode as the number of users grows large. I

    Energy-Aware Base Stations: The Effect of Planning, Management, and Femto Layers

    Get PDF
    We compare the performance of three base station management schemes on three different network topologies. In addition, we explore the effect of offloading traffic to heterogeneous femtocell layer upon energy savings taking into account the increase of base station switch-off time intervals. Fairness between mobile operator and femtocell owners is maintained since current femtocell technologies present flat power consumption curves with respect to served traffic. We model two different user-to-femtocell association rules in order to capture realistic and maximum gains from the heterogeneous network. To provide accurate findings and a holistic overview of the techniques, we explore a real urban district where channel estimations and power control are modeled using deterministic algorithms. Finally, we explore energy efficiency metrics that capture savings in the mobile network operator, the required watts per user and watts per bitrate. It is found that the newly established pseudo distributed management scheme is the most preferable solution for practical implementations and together with the femotcell layer the network can handle dynamic load control that is regarded as the basic element of future demand response programs

    Performance analysis of non-stationary peer-assisted VoD systems

    Get PDF
    Abstract—We analyze a peer-assisted Video-on-Demand system in which users contribute their upload bandwidth to the redistribution of a video that they are downloading or that they have cached locally. Our target is to characterize the additional bandwidth that servers must supply to immediately satisfy all requests to watch a given video. We develop an approximate fluid model to compute the required server bandwidth in the sequential delivery case. Our approach is able to capture several stochastic effects related to peer churn, upload bandwidth heterogeneity, non-stationary traffic conditions, which have not been documented or analyzed before. We provide an analytical methodology to design efficient peer-assisted VoD systems and optimal resource allocation strategies. I

    Peer-assisted VoD Systems: An Efficient Modeling Framework

    Get PDF
    We analyze a peer-assisted Video-on-Demand (VoD) system in which users contribute their upload bandwidth to the redistribution of a video that they are downloading or that they have cached locally. Our target is to characterize the additional bandwidth that servers must supply to immediately satisfy all requests to watch a given video. We develop an approximate fluid model to compute the required server bandwidth in the sequential delivery case, as well as in controlled nonsequential swarms. Our approach is able to capture several stochastic effects related to peer churn, upload bandwidth heterogeneity, and nonstationary traffic conditions, which have not been documented or analyzed before. Finally, we provide important hints for the design of efficient peer-assisted VoD systems under server capacity constraints

    Modeling Sleep Modes Gains with Random Graphs

    Get PDF
    Abstract-Nowadays two main approaches are being pursued to reduce energy consumption of network devices: the use of sleep modes in which devices can be put in low-power state, and the adoption of energy proportional approaches where the device architecture is designed to make energy consumption proportional to the actual load. In this paper, we formulate a theoretical model based on random graph theory to estimate the potential gains that can be achieved by adopting sleep modes in networks where energy proportional devices are deployed. Is sleep mode still a winning approach in these scenarios? We consider a simple model of the energy consumption of network devices: a fixed cost represents the static consumption and a variable cost describes the linear proportionality to the traffic load. Our results show that sleep modes are effective also in presence of load proportional solutions, even if traffic has to be routed on longer paths, unless the static power consumption component is of the same order of magnitude of the load proportional component
    corecore